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1. Solve the equation cos x + (1  
2
1 sin 2x) = 0, in the interval 0  x < 360. 

  (9) 

 

 

2. (a) For the binomial expansion of 
2)1(

1

x
, x < 1, in ascending powers of x, 

  (i) find the first four terms,  

 

  (ii) write down the coefficient of x
n
. 

                      (2) 

(b) Hence, show that, for x < 1, 


1n

nnx  = 
2)1( x

x


. 

(2) 

(c) Prove that, for x < 1, 
2

2

1 )1(

)1(
)1(

x

xxa
xan

n

n










, where a is a constant. 

 (4) 

(d) Hence evaluate 






1
32

15

n
n

n
. 

(2) 

 

 

3.     f(x) = x
3
  (k + 4)x + 2k, where k is a constant. 

 

(a) Show that, for all values of k, the curve with equation y = f(x) passes through the point  

(2, 0). 

(1) 

(b) Find the values of k for which the equation f(x) = 0 has exactly two distinct roots. 

(5) 

 

Given that k > 0, that the x-axis is a tangent to the curve with equation y = f(x), and that the line  

y = p intersects the curve in three distinct points, 

 

(c) find the set of values that p can take. 

(5) 
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4.       Figure 1 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 The circle, with centre C and radius r, touches the y-axis at (0, 4) and also touches the line with 

equation 4y  3x = 0, as shown in Fig. 1. 

 

 (a) (i) Find the value of r. 

 

  (ii) Show that  arctan  
4
3  + 2 acrtan  

2
1  = 

2
1 . 

(8) 

 

 The line with equation 4x + 3y = q, q > 12, is a tangent to the circle. 

 

(b) Find the value of q. 

(4) 
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5. (a) Given that  y = ln [t + (1 + t
2
)],      show that   

t

y

d

d
 = 

)1(

1
2t

. 

 (3) 

 The curve C has parametric equations 

 

   x = 
)1(

1
2t

, y = ln [t + (1 + t
2
)],     t  ℝ. 

 

 A student was asked to prove that, for t > 0, the gradient of the tangent to C is negative. 

 

 The attempted proof was as follows: 

 

         y  = ln 









x
t

1
 

  = ln 






 

x

tx 1
 

 = ln (tx + 1)  ln x 

         
x

y

d

d
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
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      = 
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2

2
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   (1 + t

2
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 = –
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


 

As (1 + t
2
) > 0, and t + (1 + t

2
) > 0 for t > 0, 

x

y

d

d
 < 0 for t > 0. 

 

(b) (i) Identify the error in this attempt. 

 

 (ii) Give a correct version of the proof. 

(6) 

 (c) Prove that  ln [t + (1 + t
2
)] = ln [t + (1 + t

2
)]. 

(3) 

(d) Deduce that C is symmetric about the x-axis and sketch the graph of C. 

(3) 
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6.     f(x) = x  [x], x  0  

 

 where [x] is the largest integer  x. 

 

For example, f(3.7) = 3.7  3 = 0.7; f(3) = 3  3 = 0. 

 

 (a) Sketch the graph of y = f(x) for 0  x < 4. 

(3) 

 (b) Find the value of p for which xx

p

d)(f
2





= 0.18. 

 (3) 

Given that 

g(x) = 
kx1

1
,   x  0,   k > 0, 

 

 and that x0 = 
2
1  is a root of the equation f(x) = g(x), 

 

 (c) find the value of k. 

(2) 

 (d) Add a sketch of the graph of y = g(x) to your answer to part (a). 

(1) 

 

  The root of f(x) = g(x) in the interval n < x < n + 1 is xn, where n is an integer. 

 

 (e) Prove that 

2 2
nx   (2n  1)xn  (n + 1) = 0. 

(4) 

  (f) Find the smallest value of n for which xn  n < 0.05. 

 (4) 
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7. Triangle ABC, with BC = a, AC = b and AB = c is inscribed in a circle. Given that AB is a 

diameter of the circle and that a
2
, b

2
 and c

2
 are three consecutive terms of an arithmetic 

progression (arithmetic series), 

 

 (a) express b and c in terms of a, 

(4) 

(b) verify that cot A, cot B and cot C are consecutive terms of an arithmetic progression. 

(3) 

 

 In an acute-angled triangle PQR the sides QR, PR and PQ have lengths p, q and r respectively. 

 

 (c) Prove that 

 

R

r

Q

q

P

p

sinsinsin
 . 

(3) 

 

 Given now that triangle PQR is such that p
2
, q

2
 and r

2
 are three consecutive terms of an 

arithmetic progression, 

 

 (d) use the cosine rule to prove that  
r

R

p

P

q

Q coscoscos2
 . 

(6) 

(e) Using the results given in parts (c) and (d), prove that cot P, cot Q and cot R are consecutive 

terms in an arithmetic progression. 

(3) 
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